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Cellular models for river networks
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A cellular model introduced for the evolution of the fluvial landscape is revisited using extensive numerical
and scaling analyses. The basic network shapes and their recurrence especially in the aggregation structure are
then addressed. The roles of boundary and initial conditions are carefully analyzed as well as the key effect of
guenched disorder embedded in random pinning of the landscape surface. It is found that the above features
strongly affect the scaling behavior of key morphological quantities. In particular, we conclude that randomly
pinned regiongwhose structural disorder bears much physical meaning mimicking uneven landscape-forming
rainfall events, geological diversity or heterogeneity in surficial properties like vegetation, soil cover por type
play a key role for the robust emergence of aggregation patterns bearing much resemblance to real river
networks.
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I. INTRODUCTION allowing the emergence of complexity.
A flow-rate unit is associated with each pixel and the flow

Through experimental studies, it has become evident irtontributing to any pixel follows the steepest descent path
the past few years that the geometrical and topological strudhrough drainage directions whose collection defines the pla-
tures of river basins are characterized by the absence of rar structure under consideration. The resulting network is
single well-defined length scale. This is reflected in the aptherefore the two-dimensional projection of the three-
pearance of power laws in the distribution of several quantidimensional treelike structure of the steepest descent paths
ties, chiefly total contributing area at a po[dil and stream draining a given basin. The planar patterns of network ag-
lengths[2—-5], and by the clear experimental assessment ofregation are obtained by employing the cellular model for
scaling properties(yielding either self-similarity or self- the evolution of a fluvial landscape originally introduced by
affinity [6]) for many geometrical descriptors of the river [15] and further studied if16]. It is aimed at describing in a
basin[7-9]. The discovery of the general underlying mecha-crucially simple manner the sole fluvial component of land-
nisms yielding scale-free features is the present theoreticgicape evolution. Although such component must be coupled
challenge. to other—chiefly hillslope—transport processes to yield a

The network associated with a given natural terrain percomprehensive dynamical descriptidii,14,17-19 it rules
taining to a river basin can be experimentally analyzed bythe planar imprinting of the network. Hence the detailed
using the so-called digital elevation map technifp®-13  study of the model is deemed significant.
that allows to determine the average height of afpasels) Starting from a three-dimensional landscape, evolution
of the order 102 Km?. Thus a fluvial basin is represented occurs according to a threshold dynamics similar to the one
in an objective manner often over four logarithm scales oforoposed in self-organized criticdOQ models[20]. The
linear size. Lower bounds are imposed by channel initiatiormain idea of the erosion dynamics is that whenever the local
processes at (Q0—100 m. Crossovers of geological nature shear stress exceeds a given threshold, erosion starts an
provide altered aggregation processes and thus an upper cligsvalanche” and a related rearrangement of the network pat-
off, usually beyond scales of O(3:01(F) m. Thus the ob- terns takes place. The model of self-organizing fluvial struc-
servational evidence yields a much more reliable frameworkures may be seen as a modification of the sandpile model
over many scales for comparison with dynamical modelgleveloped as a paradigm of the dynamics of open, dissipa-
aimed at the origin of scale-free features. tive systems with many degrees of freedom. It may be

Much interest has been recently attracted by landscapéought of as belonging to the set of models in which the
evolution models. Chief among those are the detailed detethreshold for activity, sayr., rather than being a constant
ministic models that address the description of the detailettalue, depends on nonlocal properties of the self-organizing
dynamics acting on the landscagéd]. The reductionist ap- structure. In the fluvial case, the nonlocal character of the
proach, where a precise description of the details of the dythreshold value follows from the fact that the threshold at the
namics is sought, is successful, and much interesting, in tharbitrary site equals a shear stress, ire.Yhy/a, whereh is
pursuit of the description and the classification of landformsthe local landscape elevation aads total contributing area
Nevertheless, as standard in critical phenomena, the mechsadrrogating total flow collected from a distributed rainfall
nism producing scale-free structures is expected to deperslent. As such, the exceeding of depends not only on
only on a few key features common to all the networks rathetocal conditions(i.e., a critical value ofVh), but also on
than on the details of the particular system under studynonlocal conditions defined by the contributing aseeom-
Hence in this work, centered on the dynamic origin of fractalputed through drainage directions, i.e., it depends on the en-
river networks, we follow a nonreductionist approach basedire state of the system that is self-organizing. Notice that the
on the simplest possible, parameter-free models capable physical rationale for the nonlocal dependence lies in the fact
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that the system is open, i.e., injected from outside, allowingmportant effects of quenched pinning on the system. Then a
flow rates to be proportional to total contributing drainageset of conclusions closes the paper.

area. The long-range nature of the threshold dynamics tends

to hide from the observer the temporal fluctuations that take II. THE MODEL

place in the evolutionary time scale. In this sense the above

model was classifiefl15] as one of spatial self-organized : . . X
criticality. the height _of the Igndscape assoqat_ed ywth everyxsgéa
Whether or not river self-organization qualifies as a more>duaré lattice of size X L. The lattice is tilted at an angle.
general framework of self-organized criticality remains to beWIth respe_cft _tp agiven axis to mimic the effects of gravity.
seen. If SOC must necessarily refer to the occurrence of gwo pOSSIbIlItI_eS will be analyzed . .
critical state in the sense of critical phenomena, where a @) AII.the sites on the Iowesfc sidekept at heighh=0)
small local perturbation can cause a significant change in th@r® possible outlgte.e., the multiple out]et arrangemeruf
configuration of the whole system and thus the system sho enserr_lble of rivers that are competing to drain the whole
both spatial and temporal scaling, then the time dynamic%XL basin. L L
should be specifically considered. One way to do this is . (2) iny one site Is kep? a=0 and it is the outlet of a
through the oscillation of the threshold in time, i.e(t),  Singdle river in theL XL basin. o
simulating climatic fluctuationésee[21]), through which in- In addition, for both the above cases, two types of initial

deed temporal evolution appears, or through perturbations gonditions will be considereda) a regular initial landscape,
random location and strength in the evolution of the land-8-9~ flat, andb) an irregular surface obtained by superpos-

scape. This is also true, as we will discuss later, if theNd @ Suitable noise on a smooth sloping surface.
landscape-forming rainfall events are described as nonuni-

We consider a lattice model of a real landscape.H,gbe

Each site collects a unit amount of water from a distrib-

form in space, leading to patches of activity randomly scatYted injec_tion(he_rg a constant rainfall rate as in _the original
tered spatially(in such a case the outflow response of the@Pproachin addition to the flow that drains into it from the

system becomes a flsigna). However, regardless of any upstream sites. A unit of water mass is assigned to each pixel

additional features, we believe that the central scope of SO&f drainage area so that the total area drained into a site is

is the dynamic explanation of the growth of fractal structuresaISO a measure of the total water mass colle<_:ted at that site.
From each site water flows to one of the eight sites, four

of the type appearing in nature, i.e., the physics of fractals. ) : .
As suc)rque ?Sel thagt our classification gf i/he model as gearest neighbors and four next nearest neighbors, having the
west heighti.e., the steepest descent patWe shall indi-

particular case of SOC is a suitable one regardless of th ; ) . . .
description of the embedded temporal activity because thgate all these eight neighboring sites as nearest-neighbors
n). This construction allows the assignment of drainage

system always reaches a fractal state. Moreover, questioni . X ) X
rections to an arbitrary landscape. The drained argis

on this basig23] the self-organized critical nature of the , ; : ! .
model by Ref[15] is irrelevant because it has been shown@Ssociated with each siteaccording to the equation

on thermodynamics grounds that scaling properties of energy
and entropy yield limit states which, depending on the con- a=> a,+1, (1)
straints, are temporally frozen or actiy6]. Furthermore, y(x)
Ref.[9] shows that optimal states like the ones dynamically
accessed by the above model may exist in temporally activethere the sum runs over the subgét) e nn(x) of neighbor
states precisely at the edge of a chaotic behavior. sites whose area is actually drainedxbyrhe second term in
A question, indeed more interesting than the semantics dtg. (1) represents the uniform injection.
SOC, is whether the constraints in the model may be relaxed Also, the(up)stream length, from sitex to the source is
to produce a “hot” fluvial landscape more closely resem-computed according to the following procedure. At a given
bling an ordinary sandpile. This question is addressdéjn site x the areas of all nn() of that site are checked, follow-
and in more detatil if9]. ing the ordinary meaning of downstream and upstream sites,
Our main goal is twofold. On one hand we will extend i.e., downstream is the site one finds following the river to
previous investigations both in accuracy and in statistics byhe outlet, upstream is the site following which one reaches
performing simulations at much larger scales. On the othethe source from which the largest incoming river enters the
hand, we will consider important issues such as the effect ofite. Following Ref[8], the nn with largest value leads to the
the boundaries and of the initial conditions bearing muchoutlet and is defined to be a downstream site. The nn with the
significance on geological influences. In particular we will second largest value indicates the longest path toward the
show that both the aforementioned effects play an importargource and is defined to be the upstream site. The sum of alll
role in the results previously obtained. We also study théhe upstream sites from siteto the source i$,. The down-
effects of disorder, say through the presence of small, uncostream length could be defined through an analogou proce-
related inhomogeneities in the initial conditions, in particulardure. Experimental measures are available for lagtandl
with regard to the robustness to single/multiple outlet ar{9].
rangements. The time evolution of the model follows the following
The paper is organized as follows. In Sec. II, the model issteps:
recalled. Section Il presents the results with emphasis on (1) The shear stress, acting at every site is computed
scaling analyses, while the following section focuses on theccording tq15]
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T=Ah,/a, (2)

whereAh, is the local gradient along the drainage direction.
(2) If the shear stress at a site exceeds a threshold value
then the corresponding heighy is reducedi.e., by erosion
in order to decrease the local gradient. The shear stress is s™
just at the threshold value. This produces a rearrangement c
the network followed by a reupdating of the whole pattern as
in step 1.
(3) When all sites have shear stress below threshold the
system is in a dynamically steady state. Since this situation is

not necessarily the most stable, a perturbation is applied tc
the network with the aim of increasing the stability of a new
steady state. A site is thus chosen at random and its height is ‘ >

increased in such a way that no lakes, i.e., sites whose heigF «
is lower than that of their eight neighbors, are formed. Steps,
1 and 2 then follow as before.

After a suitable number of the perturbatiofssep 3, the
system reaches a steady state that is insensitive to furthe
perturbations and where all statistics of the networks are
stable. This resulting state is scale-free, i.e., it is character-
ized by power-law distributions of the physical quantities of  FIG. 1. The final landscap®n the lefi and the final network
interest. structure(on the righj for model A and model B. Models A and B

start from a deterministic initial condition. Model A has single out-
let, model B has multiple outlets.

Ill. RESULTS

A. Landscape evolutions els A and B. The same picture for models C and D is shown
. . . - in Fig. 2.

. Oulr numerlc?l C?ICUIE‘“O”S WeLe carn?]d out pr;]a bidimen-" 1.5 features can be grasped from these pictures. First, in
sional square latticgwhere each site has eight nearest-y,o regyits of both models A and B, there is a strong memory

neighbors for sizes up tol =200 with reflecting boundary ¢ i initial configuration despite the fact that the dynamics
conditions in the direction transversal to the flow and open

boundary condition in the parallel one. We considered the
following initial conditions

Model A A comblike structure with a single outlet. This
was the situation originally studied jd5] and our results are
in agreement with theirs.

Model B An inclined plane with all sites at the bottom of
the plane allowed to be possible outlets. This choice was"
selected with the aim of investigating the differences arising
when arranging the boundary conditions with multiple out-
lets versus single outlet. The former allows for competition
for drainage area among rivers.

Models C and D The two previously considered situa-
tions with the addition of a random, uncorrelated noise
(whose strengtht, i.e., variance, is less than 10% of the av
erage height That is, on top of the height computed accord-
ing to the rules of model A and B, respectivély comblike
lattice and an inclined planewe added a randomh that is
extracted in the intervdl—(h)/10{h)/10] where(h) repre-
sents the mean altitude of the landscape.

An average over a fewup to five configurations was
taken. This choice, especially when coupled to large sizes o
the system, proves sufficient for statistical descriptions
sought in view of the self-averaging nature of the random
perturbation. FIG. 2. The final landscap@n the lefi and the final network

In Fig. 1 typical landscapes sculpted by the above dystructure(on the right for model C and model D. Models C and D
namical process and the corresponding networks drawstart from a random initial condition. Model C has single outlet,
through the steepest descent construction are shown for moghodel D has multiple outlets.

021118-3



GUIDO CALDARELLI

PHYSICAL REVIEW E63 021118

TABLE I. Scaling relations: all the exponents can be determined 10
in terms ofd, in the fractal case anH in the self-affine case.

Exponent Self-similar Self-affine 10.1:
T 2—d, (L+2H)/(1+H)
0% 2/d, 1+H
h d/2 1/(1+H) 107

of the erosion process was somewhat expected to be suffi
ciently strong to soon lose the imprinting of its initial condi-

tion. Second, the single outlet restriction imposed in model A
appears to be a severe constraint because it increasingly a

fects the wandering of the main river toward the lowest part
of the basin. Our results suggest that this is indeed the cas

for flat initial conditions(A and B), while for noisy initial-
conditions boundary effects are of lesser importance.

B. Area and length exponents

Let us defineP(a,L) andII(l,L) as the exceedinécu-
mulative) probability distributions of the drainage araand
stream lengtHh, respectively, arising in a domain of linear
sizeL. The following scaling forms are expected to hp8d:

P(a,L)zalTF( LiH)' 3

In(,L)=1"6 (4)

E .

HereH is the Hurst exponeri6] andd, is the stream-length
(or chemical distangdractal exponent.
As it was already notefB], for self-affine river networks

10—2 _3. |||||n|_ FETERETIT BRI RTTIT| BRI ) SR TTT! B S W R TITT BRI BTSRRI
10 10

FIG. 4. Scaling functiora'™"P(a,L) versusa/L**H for model
C. The used values to obtain the collapse werel.43, 7=1.5r
=1.38, andr=1.38 for models A, B, C, D, respectivelid=0.6 in
all the cases.

Another important indicator of basin morphology is the
relation between the mean total contributing aaeand the
length of the main strearh,, L% [8,24], which is com-
monly known as Hack’s la}22]:

a2 el ®)

The related exponent has been studied in all simulations. A
summary of the scaling relations between the various expo-
nents involved is reported in Table I.

Experimental values of and y are available from earlier
analyses of DTMs from basins of different size, geology,

(H<1d,=1), the scaling relations relate all exponents inexposed lithology, climate, and vegetatidn24]. It was ob-

terms of H. For self-similar river networksH{=1,d,>1),
the same happens in termsayf.

1=20
L=30
L=40
L=50
L=70

>o oo

x  L=100
E A  — slope=043
10" 10° 10

P(a’>a,L)

L=20
L=30
L=40
L=50
L=70
L=100
slope=0.38

ol o

10°

FIG. 3. Log-log plot of the area cumulated distributiBga,L)
versusa for models A, B, C, and D. The full line has a slope
corresponding tar=1.43, 7=1.50, 7=1.38, andr=1.38, respec-
tively.

served that, while a majority of basins tend to seemingly
universal values=1.43+0.02 andy=1.8=0.1, exceptions

are observed where altered values are observed although al-
ways in a concerted manner. Since it was suggdgsiethat
scaling laws for river networks are related, e.g=1+ (7
—1)/h, it was concluded there that no universal exponents
are expected in nature. Rather, the roles of geology and tec-
tonics concert a coordinated scaling structure that strives for
fractality yet adapted to its geological environment. The re-
sults of the model described here, revisited in the above
light, conform to this view.

The results for the four models A, B, C, and D for the area
distributions are shown in Fig. 3. It is apparent that due to
the pathological initial conditions the scaling behavior for
models A and B is somewhat more noisy than for models C
and D. Figure 4 contains the collapse plot for all the cases.
Figure 5 shows the stream-length distribution for the four
models. For this picture the same remarks of Fig. 3 apply. In
Fig. 6 we show the collapse plot corresponding to the
stream-length distributions.

A summary of the scaling exponents obtained is included
in Table Il, where we observe a consistent picture of related
scaling exponents as theoretically expected: see Table I.
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FIG. 5. Log-log plot of the length cumulated distributiBr(l, L) FIG. 6. Scaling function®~"TI(l,L) versusl/L“ for models A,

versus| for models A, B, C, and D. The full line has a slope B, C, and D. The values used to obtain the collapse werg to
corresponding toy=1.6, y=1.7, y=1.6, andy= 1.6, respectively. =1.6, y=1.7, y=1.6, andy= 1.6, respectively.

C. Energy dissipation and optimal channel networks neity in surface properties characterizing locally the critical

During the evolution of the landscape we also monitored®hear threshold. , , _
the change in total energy dissipation of the system, defined VVithin the river basin, morphological and geological con-
asE=2xa2'5 (wherex spans all sites of the lattizé25—27. straints play a definite role in the dynamlcgl evolgtlon pf
The reason of this name come from the computation at anzndforms. The effects of quenched constraints, simulating

site of the gravitational energy lost by the falling of the wa- ny h_eterogel_*neity in thg distribution of surficial _properties
ter. In any point, one can expect a gravitational energy IOSsaffectmg erosion properties, are to favor some sites for the

of the order ofa,Ah, whereAh, represents the local gradi- flowpaths, thus excluding other sites from the capture of the

ent along the drainage direction. By using the observed Scageveloping networl_< that ultimately shapes the evolution pro-
) 05 . . . _cess. In order to mimic such effects we analyzed the effect of
ing Ah,oca,” one obtains the above formula. The interest in

this quantity comes from the fact that an extensive class o random pinning of a small region of the total surféiypi-

) ally 5—-9 9% where the evolution is frozen, that is, the height
models k”OV_V” as optlm_al cha_nn_el netwd@CN) models, is pinned to its initial value. We find that this constraint tends
assumed this quantity is minimized by natural landscap

evolution. By using this principle, OCN described evoIutioni%rf]z\i{{?(:nzggreganon even in the presence of random initial
from random spanning graphs to network more similar to the As regards the effect of the pinning, Fig.(@n the lefy

real ones. [tis interesting to note that in this model where "Lhows a sample whose dimension is 100 with multiple outlet
hypothesis is made oB, we still observe an almost mono-

. : . . and random initial noisémodel D. Figure 7(on the righ}
t_onlcal decrease_ CE ".iSSOC'at.ed with the dynamical evolu- shows the same configuratidevolved from the same initial
tions, and a stabilization on different plateaus of valueB.of

The actual figures for a sample 30 are as folloEsstarts conditions but with a 5% dilution pinning. It is evident that

from an initial value of 7600 and decreases towards a IateaSOme of the smaller streams on the left have increased their
of 6800—-6700 where this monotonic decrease bfcomeééze thus leading to a bigger aggregation.
In this case we found=1.43+0.02. Moreover, all the

0 . . :
ilgs\f\éer\r/éj iﬁ) o(:ﬁg:enics)gelﬂrééiogg;rss;{ﬁqpimsankieczi\ggr,uilﬁges other exponents verify the correct scalings predicted in Table
' P q I. Purely for comparison purposes with the previous results,

|On ttirr]r?alliltgrEtS %fst_h;z suggested connection of fractality andwe also report the plot of the area distribution in Fig. 8 on
P Yo the left. We also found that model D reproduces the same

IV. GEOLOGICAL CONSTRAINTS AND QUENCHED TABLE Il. Data computed for the various computer simula-

RANDOM PINNING tions. Since the scaling relationstig= (7— 1)/(y— 1) one can also
ﬁompute the theoretical vallg, with the measured onle.,. The

This section presents a detailed study on the effects Oagreement of the two is rather good.

landcape evolution of quenched randomness, simulated by
random choice of sites unable to evolve regardless of the
threshold value developed therein. It is found that this form
of disorder tends to favor aggregation patterns characterized 1.43+0.03 1.50-0.03 1.38-0.02  1.38-0.02
by values ofr=1.43+0.02 for both models, say, A and B y 1.60-0.05 1.7:0.05 1.60-0.02 1.60-0.02
(i.e., with single outlets or open boundary conditiprEhese  h,, 0.72£0.05 0.7%0.05 0.63:0.05 0.63:0.05
results suggest that the origin of the recurrent values ob+,, 0.72£0.05 0.690.02 0.65-0.02 0.65-0.02
served in nature could be related to the ubiquity of heteroge

Model A Model B Model C Model D
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2 % *
o L=30 A
A L=50 A
FIG. 7. Comparison between the evolution of two identical ini- X 5130 & X %
tial configurations of model C with size=100 without(left) and * L=130 "
with pinning (right). The pinning dilution was 5%. Lol il ol 4
0 100 100 10t 10

results, i.e.7=1.43+0.04 andy=1.60+0.04. We are con-
fident that this result at least for model C is quite robust with  FIG. 8. Log-log plot of the area distributioR(a,L) vs a for
respect to changes of the pinning dilution. In the case of anodel C with a 5% dilution(left) and with a 9% dilution(right).
9% dilution for a smaller number of simulation we found The slopes of the lines correspond, respectivelyr#dl.43 andr
quite similar resultsr=1.44+=0.05 and a cumulative plot of =1.44.
; . . .

P(a _>a,L) is shown on the right p?”. of Fig. &9, in a rather good agreement with the scaling relations shown

This result suggests that the origin of recurrent value§ Table |
observed in nature could indeed be related to the ubiquity OP :

logical and hological traints in th ‘ We suggest that the lack of robustness in the value of the
geological and morphological constraints in the surtace prOpécaling exponents with respect to boundary and initial con-
erties locally characterizing the critical shear stress.

ditions is related to the nonlocal character of the shear-based
threshold, differently from what is observed in classical
V. CONCLUSIONS sandpile models of self-organized criticalf§0]. The intrin-

dsic interest of the different aggregation properties of the

In this paper we revisited the model originally introduce A . S
in [15] thar: V\I/De extended both in accuracy gnd g{)als. SpeCifi_steady states of the dynamics is related to their optimality
with respect of total energy dissipatiph5]. In fact, depend-

cally, we analyzed the stability of the universality class of. i :
ing on external conditions, the same dynamical process may

the original model with respect to the initial conditions and. ; : X L
to the change from single to multiple outlets. We found thatmdeed get trapped in steady-state configurations yielding lo-

if one starts with structured initial conditions, critical expo- cal mmm:ja f(.)f the tOt"’fll en%rlgy d'ts.s'p?;“on functional, in what
nents are sensible to a change from single to multiple outletd/® May deliNe as a feasibie optimality procgsk

On the other hand, upon starting from disordered initial cons Finally, we hgve found that quenched disorder, modeled
é)y random pinning, has a profound effect on the robustness

that appears to be robust to the change from single to mu Of the r_esultmg planar patterns t?y favoring aggregation and
y locking the planar landforms into modes quite similar to

tiple outlet. Thus this simple model, under controlled condi- ;
the ones observed in nature.

tions, yields somewhat different yet internally consistent Th Kabl btained b h a simpl del
scale-free fluvial landforms depending on the dominant con- € remarkable success obtained by such a simplie mode

ditions affecting evolution in enlightening some crucial features of the real basins is
The above results conform to the experimental observalromising for a future success in a general characterization

tion [8], suggesting that the relevant scaling exponents fon the dynamics of fractal growth.
river networks are not universal. Rather, the fractal nature
of river networks adjusts to the constraints imposed by the
geological environment in a coordinated manner. It is inter- Enlightening discussions with J. Banavar, F. Colaiori, A.
esting to observe that the final state of all simulation yields=lammini, A. Maritan, and A. Rinaldo are acknowledged.
indeed fractal structures, as observed in nature, though chaBuggestions by A. Giacometti have been particularly helpful.
acterized by different aggregation properties. The exponentshe author acknowledges support from EU Contract No.
characterizing these different aggregates, nevertheless folloMIRXCT980183.
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