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Cellular models for river networks
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A cellular model introduced for the evolution of the fluvial landscape is revisited using extensive numerical
and scaling analyses. The basic network shapes and their recurrence especially in the aggregation structure are
then addressed. The roles of boundary and initial conditions are carefully analyzed as well as the key effect of
quenched disorder embedded in random pinning of the landscape surface. It is found that the above features
strongly affect the scaling behavior of key morphological quantities. In particular, we conclude that randomly
pinned regions~whose structural disorder bears much physical meaning mimicking uneven landscape-forming
rainfall events, geological diversity or heterogeneity in surficial properties like vegetation, soil cover or type!
play a key role for the robust emergence of aggregation patterns bearing much resemblance to real river
networks.
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I. INTRODUCTION

Through experimental studies, it has become eviden
the past few years that the geometrical and topological st
tures of river basins are characterized by the absence
single well-defined length scale. This is reflected in the
pearance of power laws in the distribution of several qua
ties, chiefly total contributing area at a point@1# and stream
lengths@2–5#, and by the clear experimental assessmen
scaling properties~yielding either self-similarity or self-
affinity @6#! for many geometrical descriptors of the riv
basin@7–9#. The discovery of the general underlying mech
nisms yielding scale-free features is the present theore
challenge.

The network associated with a given natural terrain p
taining to a river basin can be experimentally analyzed
using the so-called digital elevation map technique@2,9–13#
that allows to determine the average height of areas~pixels!
of the order 1022 Km2. Thus a fluvial basin is represente
in an objective manner often over four logarithm scales
linear size. Lower bounds are imposed by channel initiat
processes at O~10–100! m. Crossovers of geological natur
provide altered aggregation processes and thus an uppe
off, usually beyond scales of O(105–106) m. Thus the ob-
servational evidence yields a much more reliable framew
over many scales for comparison with dynamical mod
aimed at the origin of scale-free features.

Much interest has been recently attracted by landsc
evolution models. Chief among those are the detailed de
ministic models that address the description of the deta
dynamics acting on the landscapes@14#. The reductionist ap-
proach, where a precise description of the details of the
namics is sought, is successful, and much interesting, in
pursuit of the description and the classification of landform
Nevertheless, as standard in critical phenomena, the me
nism producing scale-free structures is expected to dep
only on a few key features common to all the networks rat
than on the details of the particular system under stu
Hence in this work, centered on the dynamic origin of frac
river networks, we follow a nonreductionist approach bas
on the simplest possible, parameter-free models capab
1063-651X/2001/63~2!/021118~7!/$15.00 63 0211
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allowing the emergence of complexity.
A flow-rate unit is associated with each pixel and the flo

contributing to any pixel follows the steepest descent p
through drainage directions whose collection defines the
nar structure under consideration. The resulting network
therefore the two-dimensional projection of the thre
dimensional treelike structure of the steepest descent p
draining a given basin. The planar patterns of network
gregation are obtained by employing the cellular model
the evolution of a fluvial landscape originally introduced
@15# and further studied in@16#. It is aimed at describing in a
crucially simple manner the sole fluvial component of lan
scape evolution. Although such component must be coup
to other—chiefly hillslope—transport processes to yield
comprehensive dynamical description@11,14,17–19#, it rules
the planar imprinting of the network. Hence the detail
study of the model is deemed significant.

Starting from a three-dimensional landscape, evolut
occurs according to a threshold dynamics similar to the
proposed in self-organized critical~SOC! models@20#. The
main idea of the erosion dynamics is that whenever the lo
shear stress exceeds a given threshold, erosion start
‘‘avalanche’’ and a related rearrangement of the network p
terns takes place. The model of self-organizing fluvial str
tures may be seen as a modification of the sandpile mo
developed as a paradigm of the dynamics of open, diss
tive systems with many degrees of freedom. It may
thought of as belonging to the set of models in which t
threshold for activity, saytc , rather than being a constan
value, depends on nonlocal properties of the self-organiz
structure. In the fluvial case, the nonlocal character of
threshold value follows from the fact that the threshold at
arbitrary site equals a shear stress, i.e.,t}¹hAa, whereh is
the local landscape elevation anda is total contributing area
surrogating total flow collected from a distributed rainfa
event. As such, the exceeding oftc depends not only on
local conditions~i.e., a critical value of¹h), but also on
nonlocal conditions defined by the contributing areaa com-
puted through drainage directions, i.e., it depends on the
tire state of the system that is self-organizing. Notice that
physical rationale for the nonlocal dependence lies in the
©2001 The American Physical Society18-1
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that the system is open, i.e., injected from outside, allow
flow rates to be proportional to total contributing draina
area. The long-range nature of the threshold dynamics te
to hide from the observer the temporal fluctuations that t
place in the evolutionary time scale. In this sense the ab
model was classified@15# as one of spatial self-organize
criticality.

Whether or not river self-organization qualifies as a m
general framework of self-organized criticality remains to
seen. If SOC must necessarily refer to the occurrence
critical state in the sense of critical phenomena, wher
small local perturbation can cause a significant change in
configuration of the whole system and thus the system sh
both spatial and temporal scaling, then the time dynam
should be specifically considered. One way to do this
through the oscillation of the threshold in time, i.e.,tc(t),
simulating climatic fluctuations~see@21#!, through which in-
deed temporal evolution appears, or through perturbation
random location and strength in the evolution of the lan
scape. This is also true, as we will discuss later, if
landscape-forming rainfall events are described as non
form in space, leading to patches of activity randomly sc
tered spatially~in such a case the outflow response of t
system becomes a 1/f signal!. However, regardless of an
additional features, we believe that the central scope of S
is the dynamic explanation of the growth of fractal structu
of the type appearing in nature, i.e., the physics of fract
As such we feel that our classification of the model as
particular case of SOC is a suitable one regardless of
description of the embedded temporal activity because
system always reaches a fractal state. Moreover, questio
on this basis@23# the self-organized critical nature of th
model by Ref.@15# is irrelevant because it has been sho
on thermodynamics grounds that scaling properties of ene
and entropy yield limit states which, depending on the c
straints, are temporally frozen or active@5#. Furthermore,
Ref. @9# shows that optimal states like the ones dynamica
accessed by the above model may exist in temporally ac
states precisely at the edge of a chaotic behavior.

A question, indeed more interesting than the semantic
SOC, is whether the constraints in the model may be rela
to produce a ‘‘hot’’ fluvial landscape more closely rese
bling an ordinary sandpile. This question is addressed in@5#
and in more detatil in@9#.

Our main goal is twofold. On one hand we will exten
previous investigations both in accuracy and in statistics
performing simulations at much larger scales. On the ot
hand, we will consider important issues such as the effec
the boundaries and of the initial conditions bearing mu
significance on geological influences. In particular we w
show that both the aforementioned effects play an impor
role in the results previously obtained. We also study
effects of disorder, say through the presence of small, un
related inhomogeneities in the initial conditions, in particu
with regard to the robustness to single/multiple outlet
rangements.

The paper is organized as follows. In Sec. II, the mode
recalled. Section III presents the results with emphasis
scaling analyses, while the following section focuses on
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important effects of quenched pinning on the system. The
set of conclusions closes the paper.

II. THE MODEL

We consider a lattice model of a real landscape. Lethx be
the height of the landscape associated with every sitex of a
square lattice of sizeL3L. The lattice is tilted at an angleu
with respect to a given axis to mimic the effects of gravi
Two possibilities will be analyzed

~1! All the sites on the lowest side~kept at heighth50)
are possible outlets~i.e., the multiple outlet arrangement! of
an ensemble of rivers that are competing to drain the wh
L3L basin.

~2! Only one site is kept ath50 and it is the outlet of a
single river in theL3L basin.

In addition, for both the above cases, two types of init
conditions will be considered:~a! a regular initial landscape
e.g., flat, and~b! an irregular surface obtained by superpo
ing a suitable noise on a smooth sloping surface.

Each site collects a unit amount of water from a distr
uted injection~here a constant rainfall rate as in the origin
approach! in addition to the flow that drains into it from th
upstream sites. A unit of water mass is assigned to each p
of drainage area so that the total area drained into a sit
also a measure of the total water mass collected at that
From each site water flows to one of the eight sites, fo
nearest neighbors and four next nearest neighbors, havin
lowest height~i.e., the steepest descent path!. We shall indi-
cate all these eight neighboring sites as nearest-neigh
~nn!. This construction allows the assignment of draina
directions to an arbitrary landscape. The drained areaax is
associated with each sitex according to the equation

ax5(
y(x)

ay11, ~1!

where the sum runs over the subsety(x)Pnn(x) of neighbor
sites whose area is actually drained byx. The second term in
Eq. ~1! represents the uniform injection.

Also, the~up!stream lengthl x from sitex to the source is
computed according to the following procedure. At a giv
site x the areas of all nn(x) of that site are checked, follow
ing the ordinary meaning of downstream and upstream s
i.e., downstream is the site one finds following the river
the outlet, upstream is the site following which one reach
the source from which the largest incoming river enters
site. Following Ref.@8#, the nn with largest value leads to th
outlet and is defined to be a downstream site. The nn with
second largest value indicates the longest path toward
source and is defined to be the upstream site. The sum o
the upstream sites from sitex to the source isl x . The down-
stream length could be defined through an analogou pro
dure. Experimental measures are available for bothax andl x
@9#.

The time evolution of the model follows the followin
steps:

~1! The shear stresstx acting at every site is compute
according to@15#
8-2
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CELLULAR MODELS FOR RIVER NETWORKS PHYSICAL REVIEW E63 021118
tx5DhxAax ~2!

whereDhx is the local gradient along the drainage directio
~2! If the shear stress at a site exceeds a threshold valutc

then the corresponding heighthx is reduced~i.e., by erosion!
in order to decrease the local gradient. The shear stress
just at the threshold value. This produces a rearrangeme
the network followed by a reupdating of the whole pattern
in step 1.

~3! When all sites have shear stress below threshold
system is in a dynamically steady state. Since this situatio
not necessarily the most stable, a perturbation is applie
the network with the aim of increasing the stability of a ne
steady state. A site is thus chosen at random and its heig
increased in such a way that no lakes, i.e., sites whose he
is lower than that of their eight neighbors, are formed. St
1 and 2 then follow as before.

After a suitable number of the perturbations~step 3!, the
system reaches a steady state that is insensitive to fu
perturbations and where all statistics of the networks
stable. This resulting state is scale-free, i.e., it is charac
ized by power-law distributions of the physical quantities
interest.

III. RESULTS

A. Landscape evolutions

Our numerical calculations were carried out on a bidim
sional square lattice~where each site has eight neare
neighbors! for sizes up toL5200 with reflecting boundary
conditions in the direction transversal to the flow and op
boundary condition in the parallel one. We considered
following initial conditions

Model A. A comblike structure with a single outlet. Th
was the situation originally studied in@15# and our results are
in agreement with theirs.

Model B. An inclined plane with all sites at the bottom o
the plane allowed to be possible outlets. This choice w
selected with the aim of investigating the differences aris
when arranging the boundary conditions with multiple o
lets versus single outlet. The former allows for competiti
for drainage area among rivers.

Models C and D. The two previously considered situa
tions with the addition of a random, uncorrelated no
~whose strengtht, i.e., variance, is less than 10% of the
erage height!. That is, on top of the height computed accor
ing to the rules of model A and B, respectively~a comblike
lattice and an inclined plane!, we added a randomDh that is
extracted in the interval@2^h&/10,̂ h&/10# where^h& repre-
sents the mean altitude of the landscape.

An average over a few~up to five! configurations was
taken. This choice, especially when coupled to large size
the system, proves sufficient for statistical descriptio
sought in view of the self-averaging nature of the rand
perturbation.

In Fig. 1 typical landscapes sculpted by the above
namical process and the corresponding networks dr
through the steepest descent construction are shown for m
02111
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els A and B. The same picture for models C and D is sho
in Fig. 2.

Two features can be grasped from these pictures. Firs
the results of both models A and B, there is a strong mem
of the initial configuration despite the fact that the dynam

FIG. 1. The final landscape~on the left! and the final network
structure~on the right! for model A and model B. Models A and B
start from a deterministic initial condition. Model A has single ou
let, model B has multiple outlets.

FIG. 2. The final landscape~on the left! and the final network
structure~on the right! for model C and model D. Models C and D
start from a random initial condition. Model C has single outl
model D has multiple outlets.
8-3
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GUIDO CALDARELLI PHYSICAL REVIEW E 63 021118
of the erosion process was somewhat expected to be s
ciently strong to soon lose the imprinting of its initial cond
tion. Second, the single outlet restriction imposed in mode
appears to be a severe constraint because it increasing
fects the wandering of the main river toward the lowest p
of the basin. Our results suggest that this is indeed the
for flat initial conditions~A and B!, while for noisy initial-
conditions boundary effects are of lesser importance.

B. Area and length exponents

Let us defineP(a,L) and P( l ,L) as the exceeding~cu-
mulative! probability distributions of the drainage areaa and
stream lengthl, respectively, arising in a domain of linea
sizeL. The following scaling forms are expected to hold@8#:

P~a,L !5a12tFS a

L11HD , ~3!

P~ l ,L !5 l 12gGS l

Ldl
D . ~4!

HereH is the Hurst exponent@6# anddl is the stream-length
~or chemical distance! fractal exponent.

As it was already noted@8#, for self-affine river networks
(H,1,dl51), the scaling relations relate all exponents
terms of H. For self-similar river networks (H51,dl.1),
the same happens in terms ofdl .

TABLE I. Scaling relations: all the exponents can be determin
in terms ofdl in the fractal case andH in the self-affine case.

Exponent Self-similar Self-affine

t 22dl (112H)/(11H)
g 2/dl 11H
h dl /2 1/(11H)

FIG. 3. Log-log plot of the area cumulated distributionP(a,L)
versusa for models A, B, C, and D. The full line has a slop
corresponding tot51.43, t51.50, t51.38, andt51.38, respec-
tively.
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Another important indicator of basin morphology is th
relation between the mean total contributing areaa and the
length of the main streaml max}Ldl @8,24#, which is com-
monly known as Hack’s law@22#:

a} l max
1/h }Ldl /h. ~5!

The related exponent has been studied in all simulations
summary of the scaling relations between the various ex
nents involved is reported in Table I.

Experimental values oft andg are available from earlier
analyses of DTMs from basins of different size, geolog
exposed lithology, climate, and vegetation@1,24#. It was ob-
served that, while a majority of basins tend to seemin
universal valuest51.4360.02 andg51.860.1, exceptions
are observed where altered values are observed althoug
ways in a concerted manner. Since it was suggested@8# that
scaling laws for river networks are related, e.g.,g511(t
21)/h, it was concluded there that no universal expone
are expected in nature. Rather, the roles of geology and
tonics concert a coordinated scaling structure that strives
fractality yet adapted to its geological environment. The
sults of the model described here, revisited in the ab
light, conform to this view.

The results for the four models A, B, C, and D for the ar
distributions are shown in Fig. 3. It is apparent that due
the pathological initial conditions the scaling behavior f
models A and B is somewhat more noisy than for models
and D. Figure 4 contains the collapse plot for all the cas
Figure 5 shows the stream-length distribution for the fo
models. For this picture the same remarks of Fig. 3 apply
Fig. 6 we show the collapse plot corresponding to t
stream-length distributions.

A summary of the scaling exponents obtained is includ
in Table II, where we observe a consistent picture of rela
scaling exponents as theoretically expected: see Table I

d

FIG. 4. Scaling functiona12tP(a,L) versusa/L11H for model
C. The used values to obtain the collapse weret51.43, t51.5t
51.38, andt51.38 for models A, B, C, D, respectively.H50.6 in
all the cases.
8-4



re
ne

an
a-
s
i-
ca
in

ap
on
th
n
-
-

f

te
m

es
nd

o
by
th
rm
iz

o
g

al

n-
of
ting
es
the
the
ro-
t of

ht
ds
itial

tlet

l
t
their

ble
lts,
on
me

a-

oe
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C. Energy dissipation and optimal channel networks

During the evolution of the landscape we also monito
the change in total energy dissipation of the system, defi
asE5(xax

0.5 ~wherex spans all sites of the lattice! @25–27#.
The reason of this name come from the computation at
site of the gravitational energy lost by the falling of the w
ter. In any pointx, one can expect a gravitational energy lo
of the order ofaxDhx whereDhx represents the local grad
ent along the drainage direction. By using the observed s
ing Dhx}ax

0.5 one obtains the above formula. The interest
this quantity comes from the fact that an extensive class
models known as optimal channel network~OCN! models,
assumed this quantity is minimized by natural landsc
evolution. By using this principle, OCN described evoluti
from random spanning graphs to network more similar to
real ones. It is interesting to note that in this model where
hypothesis is made onE, we still observe an almost mono
tonical decrease ofE associated with the dynamical evolu
tions, and a stabilization on different plateaus of values oE.
The actual figures for a sample 30 are as follows:E starts
from an initial value of 7600 and decreases towards a pla
of 6800–6700 where this monotonic decrease beco
slower (1% decrease in 50 000 steps!. This behavior, also
observed in other models@28#, bears important consequenc
in the light of the suggested connection of fractality a
optimality @5,25–27#

IV. GEOLOGICAL CONSTRAINTS AND QUENCHED
RANDOM PINNING

This section presents a detailed study on the effects
landcape evolution of quenched randomness, simulated
random choice of sites unable to evolve regardless of
threshold value developed therein. It is found that this fo
of disorder tends to favor aggregation patterns character
by values oft51.4360.02 for both models, say, A and B
~i.e., with single outlets or open boundary conditions!. These
results suggest that the origin of the recurrent values
served in nature could be related to the ubiquity of hetero

FIG. 5. Log-log plot of the length cumulated distributionP( l ,L)
versus l for models A, B, C, and D. The full line has a slop
corresponding tog51.6, g51.7, g51.6, andg51.6, respectively.
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neity in surface properties characterizing locally the critic
shear threshold.

Within the river basin, morphological and geological co
straints play a definite role in the dynamical evolution
landforms. The effects of quenched constraints, simula
any heterogeneity in the distribution of surficial properti
affecting erosion properties, are to favor some sites for
flowpaths, thus excluding other sites from the capture of
developing network that ultimately shapes the evolution p
cess. In order to mimic such effects we analyzed the effec
a random pinning of a small region of the total surface~typi-
cally 5–9 %! where the evolution is frozen, that is, the heig
is pinned to its initial value. We find that this constraint ten
to favor aggregation even in the presence of random in
conditions.

As regards the effect of the pinning, Fig. 7~on the left!
shows a sample whose dimension is 100 with multiple ou
and random initial noise~model D!. Figure 7~on the right!
shows the same configuration~evolved from the same initia
conditions! but with a 5% dilution pinning. It is evident tha
some of the smaller streams on the left have increased
size thus leading to a bigger aggregation.

In this case we foundt51.4360.02. Moreover, all the
other exponents verify the correct scalings predicted in Ta
I. Purely for comparison purposes with the previous resu
we also report the plot of the area distribution in Fig. 8
the left. We also found that model D reproduces the sa

TABLE II. Data computed for the various computer simul
tions. Since the scaling relationshiph5(t21)/(g21) one can also
compute the theoretical valuehex with the measured onehex . The
agreement of the two is rather good.

Model A Model B Model C Model D

t 1.4360.03 1.5060.03 1.3860.02 1.3860.02
g 1.6060.05 1.7060.05 1.6060.02 1.6060.02
hth 0.7260.05 0.7160.05 0.6360.05 0.6360.05
hex 0.7260.05 0.6960.02 0.6560.02 0.6560.02

FIG. 6. Scaling functionl 12gP( l ,L) versusl /Ldl for models A,
B, C, and D. The values used to obtain the collapse were tg
51.6, g51.7, g51.6, andg51.6, respectively.
8-5



ith
f
d
f

e
y
op

ed
ci
o

nd
a

o-
le
on
as

u
di
n

on

rv
fo
ur
th
er
ld
h

en
llo

wn

the
on-
sed
al

the
lity

ay
lo-
at

led
ess
nd
to

odel
is

tion

A.
d.
ful.
o.

ni-

GUIDO CALDARELLI PHYSICAL REVIEW E 63 021118
results, i.e.,t51.4360.04 andg51.6060.04. We are con-
fident that this result at least for model C is quite robust w
respect to changes of the pinning dilution. In the case o
9% dilution for a smaller number of simulation we foun
quite similar resultst51.4460.05 and a cumulative plot o
P(a8.a,L) is shown on the right part of Fig. 8@29#.

This result suggests that the origin of recurrent valu
observed in nature could indeed be related to the ubiquit
geological and morphological constraints in the surface pr
erties locally characterizing the critical shear stress.

V. CONCLUSIONS

In this paper we revisited the model originally introduc
in @15# that we extended both in accuracy and goals. Spe
cally, we analyzed the stability of the universality class
the original model with respect to the initial conditions a
to the change from single to multiple outlets. We found th
if one starts with structured initial conditions, critical exp
nents are sensible to a change from single to multiple out
On the other hand, upon starting from disordered initial c
ditions, we found critical exponents belonging to a new cl
that appears to be robust to the change from single to m
tiple outlet. Thus this simple model, under controlled con
tions, yields somewhat different yet internally consiste
scale-free fluvial landforms depending on the dominant c
ditions affecting evolution.

The above results conform to the experimental obse
tion @8#, suggesting that the relevant scaling exponents
river networks are not universal. Rather, the fractal nat
of river networks adjusts to the constraints imposed by
geological environment in a coordinated manner. It is int
esting to observe that the final state of all simulation yie
indeed fractal structures, as observed in nature, though c
acterized by different aggregation properties. The expon
characterizing these different aggregates, nevertheless fo

FIG. 7. Comparison between the evolution of two identical i
tial configurations of model C with sizeL5100 without~left! and
with pinning ~right!. The pinning dilution was 5%.
G
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in a rather good agreement with the scaling relations sho
in Table I.

We suggest that the lack of robustness in the value of
scaling exponents with respect to boundary and initial c
ditions is related to the nonlocal character of the shear-ba
threshold, differently from what is observed in classic
sandpile models of self-organized criticality@20#. The intrin-
sic interest of the different aggregation properties of
steady states of the dynamics is related to their optima
with respect of total energy dissipation@15#. In fact, depend-
ing on external conditions, the same dynamical process m
indeed get trapped in steady-state configurations yielding
cal minima of the total energy dissipation functional, in wh
we may define as a feasible optimality process@5#.

Finally, we have found that quenched disorder, mode
by random pinning, has a profound effect on the robustn
of the resulting planar patterns by favoring aggregation a
by locking the planar landforms into modes quite similar
the ones observed in nature.

The remarkable success obtained by such a simple m
in enlightening some crucial features of the real basins
promising for a future success in a general characteriza
of the dynamics of fractal growth.
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